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Abstract

We consider the problem of obtaining integral representation of feedback operators for damped hyperbolic

control systems. We show that for the wave equation with Kelvin-Voigt damping and non-compact input

operator, the feedback gain operator is Hilbert-Schmidt. This result is then used to provide an explicit

integral representation for the feedback operator in terms of functional gains. Numerical results are given

to illustrate the role that damping plays in the smoothness of these gains.
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1 Introduction and Motivation

The purpose of this article is to extend the representation theorem in [1] and [7] to certain classes of damped

hyperbolic systems. The original motivation for our study of hyperbolic systems comes from the work by

Lupi, Chun, and Turner [8]. The approach in [8] is interesting because they make no prior assumptions

regarding the form of the controls and actuators so that the gains operators produced by an optimal design

could be used to make decisions about where actuators and sensors are best placed. In particular, in [8] it

was assumed that the input operator was the identity and the elastic system was not damped. By solving the

LQR problem with the input operator equal to the identity, one can gain insight into the type and location

of practical distributed controllers for structural control. This insight comes from explicit knowledge of the

kernels (so called functional gains) that describe the integral representations of feedback gain operators.

Even with no damping the LQR problem has a solution since the input operator is the identity (the system

is exactly controllable). However, as we see below the problem with no damping is extremely complex. Basic

questions concerning the existence and smoothness of functional gains remain open and yet these issues are

important in the applications proposed in [8]. Consequently, as a �rst step we take the middle ground and

consider damped systems with distributed control.

Except for the obvious cases with bounded input operator and a �nite number of controllers, the problem

of obtaining explicit representations of feedback laws is more complex than one might �rst imagine. In the

most general case, this problem is equivalent to the problem that led Grothendieck to develop the theory of

topological tensor products and nuclear spaces. This theory led to the famous Schwartz Kernel Theorem.

However, the fact that the operators of interest often arise as solutions to Riccati equations can be exploited

to yield reasonable results. The representation problem for a parabolic problem with unbounded control

operator was �rst considered in [1] and [7]. It was shown that as long as the input operator is bounded

relative to the open loop dynamic operator, the solution to the algebraic Riccati equation is Hilbert-Schmidt.

This fact was then exploited to show that the resulting feedback operator had an integral representation.

For the hyperbolic case considered here, these types of results are more intricate and highly dependent on

the type of damping.

In the Section 2 we present a numerical example involving the control of a hybrid cable-mass system.

This example is used to motivate the model problem and to demonstrate that distributed controllers can

enhance disturbance attenuation. We then concentrate on the 1D wave equation with Kelvin-Voigt damping.

Although similar results can be obtained for other damping models, we present the basic theorem for this

model in order to keep this paper moderately short. However, we illustrate the ideas and di�culties for

other damping models with numerical examples. Finally we close with a few comments about future work

and other open problems.

2 Control for a Cable-Mass System

The following system was proposed by Nayfeh, Nayfeh and Mook [11] as a simple example of a nonlinear

distributed parameter system with the property that many standard discretized lumped models failed to

capture the essential nonlinear behavior of the dynamic system governed by the partial di�erential equation.

This system was also considered in [2] where it was used as a test model for MINMAX control for distur-

bance attenuation. However, in [2] there was only one controller and, although disturbance attenuation

was achieved, we shall see below adding a distributed controller can improve performance. The MINMAX

approach provides a \robust state feedback control law" which is less sensitive to disturbances and certain

unmodeled dynamics than is the LQR design. The idea is to obtain a representation of the control law

and then use approximation theory to compute �nite dimensional suboptimal controllers. These suboptimal

controllers were used to attack the problem of designing reduced order state estimators. We shall limit our

discussion here to the full state feedback problem.

Consider the hybrid nonlinear distributed parameter system described by a vibrating cable held �xed at

one end and with a mass attached at the other end. The mass is suspended by a spring which has nonlinear

sti�ening terms and is forced by a disturbance (see Figure 2.1). The equations for the hybrid system are [2]
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with boundary condition

w(t; 0) = 0: (2:3)

The initial conditions are given by

w(0; s) = w0;
@

@t
w(0; s) = w1: (2:4)

Here, w(t; s) represents the displacement of the cable at time t, and position s, w(t; `) represents the

position of the mass at time t, � and m are the densities of the cable and mass respectively, � is the tension

in the cable, and 
 is a damping coe�cient. The alphas are coe�cients describing the nonlinear e�ects of the

spring. The term �(t) is viewed as a disturbance and u1(t; s) and u2(t) are control inputs. For the moment

we assume Kelvin-Voigt (internal) damping in the cable.

The problem is hybrid in that the system is described by a linear partial di�erential equation (the wave

equation) coupled through the boundary condition to a low order nonlinear ordinary di�erential equation

(Du�ng's equation). In [2] it was assumed that the control acted exclusively on the mass (i.e. that u1(t; x)

=0).

This model is often �rst written as a second order system in a Hilbert space H of the form

�y(t) +D0 _y(t) +A0y(t) + F0(y(t)) = B0u(t): (2:5)

For the cable-mass problem considered here, H = L2(0; 1)� lR1 and y(t) = [w(t; �); w(t; `)]T .

w(t,s)

s=0 s=ls

Figure 2.1: Cable-Mass System

This formal system has the advantage that it has the same appearance as the �nite dimensional case

and in order to address viscous and \structural" damping one merely replaces D0 = A0 with D0 = I and

D0 = [A0]
1=2, respectively. We note however, that it is more consistent with physics to write the system in

the form

�y(t) + S�(Sy(t) + 
T _y(t)) + F0(y(t)) = B0u(t) (2:6)

where S = T = [A0]
1=2. Observe that A0 = A�

0
> 0 and so S� = S and S�S = S�T = A0. Hence, (2.6) is

formally obtained by factoring [A0]
1=2 out of the expression D0 _y(t) +A0y(t) in (2.5). Note also that (2.6) is

of a form that allows for structural damping where S = [A0]
1=2 and T = I, as well as for viscous damping

where S = [A0]
1=2 and T = S�1 = [A0]

�1=2. In addition, by writing the system in the second order form

(2.6), one captures a form that comes from balance laws and at the same time sets the stage for a simple

formulation of the problem in �rst order state space form.
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The system governed by equations (2.1) - (2.4) can be written as a dynamical system in an appropriate

(in�nite dimensional) state space. Although there are several equivalent formulations for this problem, we

shall write the governing equations as the �rst order system

_x(t) = Ax(t) + F (x(t)) + Bu(t) +D�(t); x(0) = x0 (2:7)

where at time t the state x(t) = [y(t); _y(t)]T lies in the Hilbert space X = H1

L� lR�L2� lR. Here, H1

L is the

subspace of the Sobolev space H1 = H1[0; `] de�ned by H1

L = fw 2 H1 : w(0) = 0g, and L2 is the standard

Lebesgue space of square integrable functions. The control u(t) lies in the control space U = L2 � lR. Here

the inner product in X is

h[w(�); �; v(�); �]T ; [ŵ(�); �̂; v̂(�); �̂]T i = �

Z `

0

w0(x)ŵ0(x)dx+ �1��̂

+�

Z `

0

v0(x)v̂0(x)dx+m��̂:

(2:8)

It is important to precisely de�ne the system operators and their domains in order to obtain correct rep-

resentations of the feedback operators that will be used to control the system. Let �` denote the \evaluation

operator" de�ned on H1[0; `] by �`(�(�)) = �(`) and de�ne the linear operator A on the domain D(A) � X

by

D(A)=

�
x=[w; �; v; �]T 2 X :w; v 2 H1

L;

�
�

�

d

ds
w +




�

d

ds
v

�
2H1;

w(`) = �; v(`) = �g;

(2:9)
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: (2:10)

The control input operator B and the disturbance operator D are de�ned by

B = [0; IH ]
T

and D� =

�
0; 0; 0;

1

m
�

�T
; (2:11)

respectively. The nonlinear operator F is de�ned on X by

F (x) =
h
0; 0; 0;�

�3

m
[�]3

iT
= [0; F0(y)]

T : (2:12)

Observe that the input operator is the same as that used in [8] in their analysis.

As noted above, this problem with u1(t; s) = 0 was considered in [2] where MINMAX control was used

to design a low order dynamics control law. This law was based on two outputs (position and velocity of

the mass) and resulted in a practical low order design. For this note, we shall consider only the full state

feedback problem. However, we allow for distributed control through u1(t; s). The simplest approach is to

linearize the system, use MINMAX design to obtain a feedback operator and apply this law to the full plant.

The linearized system has the form

d

dt
x(t) = Ax(t) +Bu(t) +D�(t); x(0) = x0: (2:13)

For this problem, with Kelvin-Voigt damping, one can apply the MINMAX theory in [10] to obtain a feedback

law of the form

u(t) =

�
u1(t; s)

u2(t)

�
= �K�x(t) (2:14)

where for � � 0 the gain operator K� : X ! H is given by

K� = B�P� (2:15)
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and P� satis�es the algebraic Riccati equation

A�P + PA� P [BB� � �2M ]P +Q = 0: (2:16)

Here M = M� � 0, Q = Q� � 0 and the system (2.16) holds in the weak sense (see [10]). When � = 0

one has the LQR design. However, when � > 0 the corresponding MINMAX controller provides additional

disturbance attenuation (see [2]).

Figure 2.2 clearly illustrates the di�erence between the performance achieved in [2] and what one can

achieve with additional distributed control. For this example, we use the same parameters and �nite element

scheme found in [2].

� � 
 m ` �1 �2 �3
1 1 :005 3 2 :01 0 3

.

When there is control on the mass only, the maximum value of � yielding a feedback law of the form (2.15)

- (2.16) was � = 1:7; this behavior is shown by the dashed line. If in addition, one allows distributed control

(at � = 1:7) there is a loss in attenuation (but possibly better performance) as shown by the dotted line.

However, by allowing control on the cable, the value of theta can be increased to � = 2:5, greatly increasing

disturbance attenuation and improving performance as shown by the solid line in Figure 2.2.
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solid line: mass & cable control, theta = 2.5

dotted line: mass & cable control, theta = 1.7

dashed line: mass control only, theta = 1.7

Figure 2.2: Displacement of the Mass under Three Types of Control.

This example clearly indicates the bene�t of distributed control and MINMAX design. Moreover, as

shown in [2] if one has explicit representation of the feedback operator K�, then this can be used to design

practical low order dynamic controllers (nonlinear compensators). In particular, it follows that since

K� =

"
K11

� K12

� K13

� K14

�

K21

� K22

� K23

� K24

�

#
(2:17)

is bounded from X to H, the control on the mass has the form

u2(t) = �

Z `

0

�ks(z)
@

@z
w(t; z)dz � �1k�(t; `)

�

Z `

0

�kv(z)
@

@t
w(t; z)dz �mkm

@

@t
w(t; `):

(2:18)
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It is tempting to assume that one also has a representation of the form

u1(t; �) = �

Z `

0

�hs(�; z)
@

@z
w(t; z)dz � �1h�(�)(t; `)

�

Z `

0

�hv(�; z)
@

@t
w(t; z)dz �mhm(�)

@

@t
w(t; `):

(2:19)

In (2.18) ks(z) and kv(z) are functional gains corresponding to strain and velocity, respectively. Their

existence and smoothness properties are assured by the Riesz Representation Theorem. For example, there

is a ks(z) 2 L2(0; `) so that K21

� : H1

L ! lR has the form

�
K21

�

�
�(�) =

Z
1

0

�ks(z)
d

dz
�(z)dz: (2:20)

However, on the surface all we know about K13

� : L2(0; 1) ! L2(0; 1) is that it is bounded. As noted

above, the desire to �nd representations of such operators as integrals led to Grothendieck's work on nuclear

spaces and the Schwartz Kernel Theorem. Recall that not all bounded linear operators on L2(0; 1) (even if

self-adjoint) have integral representations, as illustrated by the identity operator.

In [8] this issue was avoided by assuming a representation similar to (2.19) and then allowing generalized

functions as kernels. This approach proved to be satisfactory for the one dimensional case considered therein,

but does not apply to more general two and three dimensional hyperbolic problems. We present some results

that lead to a representation of the form (2.19) when there is suitable damping in the system. Although this

approach does not apply to the undamped case, the ideas can be extended to certain higher dimensional

damped elastic systems. Moreover, we conjecture that the undamped problem in 3D systems will not yield

a representation even of the type considered in [8].

We turn now to the simple 1D wave equation in order to state precise results and to keep this article

at a reasonable length. Moreover, we restrict our presentation to LQR design (� = 0) since we can rely on

existing literature to outline the results. Extensions to higher dimensional problems with � > 0 will appear

in a future paper.

3 The Wave Equation

Consider the wave equation with Kelvin-Voigt damping. Damping plays a key role in the design of controllers

for hyperbolic systems. To illustrate this role, consider the LQR control problem for the wave equation

de�ned by
@2

@t2
w(t; s) =

@2

@s2
w(t; s) + 


@3

@s2@t
w(t; s) + u(t; s);

0 < s < 1; 0 < t;

(3:21)

with boundary conditions

w(t; 0) = 0; w(t; 1) = 0; 0 < t (3:22)

and cost function

J(u) =
1

2

Z
1

0

Z
1

0

"���� @@sw(t; s)
����
2

+

���� @@tw(t; s)
����
2

+ ju(t; s)j2

#
dsdt: (3:23)

This problem is de�ned on the state space X = H1

0
(0; 1)� L2(0; 1). As above, care must be used to de�ne

the system operators. In particular, let

D(A) =

��
w

v

�
2 X : w; v 2 H1

0
(0; 1); w+ 
v 2 H1(0; 1)

�
(3:24)

and de�ne A by

A

�
w

v

�
=

�
v(�)

d
ds

�
d
ds
w + 
 d

ds
v
� �

: (3:25)
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The control space is U = L2(0; 1) and the control operator is de�ned from U into X = H1

0
� L2 by

B =

�
0

IL2

�
: (3:26)

Here, � = 0 and Q = R = IX . The LQR problem has a solution (even if 
 = 0) given by

u(t; �) = �K

�
w(t; �)
@
@t
w(t; �)

�
; (3:27)

where K : H1

0
(0; 1)� L2(0; 1) has the form

K = B�P (3:28)

and P satis�es the weak form of the Riccati equation (ARE) given by

hPx;AziX + hAx;PziX � hB�Px;B�PziU + hCx;CziY = 0; (3:29)

for all x; y in D(A). For this second order system, K takes the form

K = [0; IL2
]P; (3:30)

or equivalently,

K = [P21; P22] (3:31)

where

P =

�
P11 P12
P21 P22

�
: (3:32)

The operators P21 : H1

0
(0; 1) ! L2(0; 1) and P22 : L2(0; 1) ! L2(0; 1) are bounded linear operators with

P �

22
= P22. The goal is to determine if there exist \nice" integral representations of these operators.

The following result is well known and may be found in [3].

Lemma 3.1 The operator A generates an analytic semigroup S(t) on X and there exist M > 0; ! > 0 with
jjS(t)jj � Me�!t.

Since A generates a stable analytic semigoup, we can apply Theorem 2.1 (page 36) in [9] to obtain the

following regularity result for P .

Lemma 3.2 There exists a self-adjoint, non-negative de�nite bounded linear transformation P = P � satis-
fying (3.29). Moreover, for each � > 0, the operators [A�]1��P belong to L(X;X).

We note that Theorem 2.1 in [9] also states that � can be set equal to zero if A is self-adjoint, normal, or

has a Riesz basis of eigenvectors. However, it is interesting to note that A is neither normal nor self-adjoint.

For this 1D problem, A does have a Riesz basis. However, this property is not needed to establish the

following representation.

Theorem 3.3 There exist functions k21(�; �); k22(�; �) such that

(1) k21(�; �) 2 L2([0; 1]� [0; 1]), k22(�; �) 2 L2([0; 1]� [0; 1]),

(2) k22(�; s) = k22(s; �),

(3) the mapping t! k21(�; t) belongs to H1

0
for almost all � 2 [0; 1]

and one has the representations

[P21�](�) =

Z
1

0

k21(�; t)�(t)dt; � 2 H1

0
; (3:33)

[P22�](�) =

Z
1

0

k22(�; t)�(t)dt; � 2 L2: (3:34)
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The proof of Theorem 3.3 is rather tedious and will not be included here. However, we note that the

proof is similar to the proof of Theorem 3.2 given in [7]. It relies on a classical theorem by Fullerton (see

Theorem 6 in [5]). However, the speci�c structure of the A operator combined with the special B operator,

B = [0 IX ]
T , is needed to carry out the proof for this hyperbolic case. Theorem 3.3 leads easily to the

following representation.

Theorem 3.4 There exist functional gains kv(�; �) and ks(�; �)

(1) ks(�; �) 2 C([0; 1]� [0; 1]), kv(�; �) 2 L2([0; 1]� [0; 1]),

(2) kv(�; z) = kv(z; �)

(3) the mapping z ! ks(�; z) belongs to H2 for almost all � 2 [0; 1]

and the LQR feedback control law has the representation

u(t; �) = �

Z
1

0

ks(�; z)
@

@z
w(t; z)dz �

Z
1

0

kv(�; z)
@

@t
w(t; z)dz: (3:35)

Proof: Since K : H1

0
� L2 ! L2 is given by

K

�
w(�)

v(�)

�
= �

Z
1

0

k21(�; z)w(z)dz �

Z
1

0

k22(�; z)v(z)ds;

let kv(�; �) = k22(�; �). Integration by parts on the �rst integral yields (for w(�) 2 H1

0
)Z

1

0

k21(�; z)w(z)dz = �

Z
1

0

�Z z

0

k21(�; t)dt

�
w0(z)dz:

The representation (3.35) follows, where

ks(�; z) = �

Z z

0

k21(�; t)dt; (3:36)

and z ! ks(�; z) belongs to H
2.

We turn now to some numerical experiments to illustrate the representation (3.35). In addition, we

consider other damping models and present numerical results that clearly show the role that damping plays

in the smoothness and existence of functional gains.

4 Numerical Experiments

We consider the wave equation with various forms of damping. We have the representation (3.35) for Kelvin-

Voigt damping and similar results can be obtained for structural damping. However, as we shall see below,

viscous damping is not su�cient to ensure the existence of L2 functional gains even though the feedback

operator exists and is bounded. We set 
 = :25 and use standard piecewise linear �nite elements to compute

ks(�; �) and kv(�; �). In particular, we use �nite elements to approximate the Riccati equation (3.29) and

construct K as de�ned by (3.30-3.32).

In order to show convergence of the scheme we compute kNs (�; �) and kNv (�; �) for Kelvin-Voigt damping.

Here, N represents the number of elements in the model (i.e., [0,1] is partitioned into (N+1) subintervals).

Figure 4.1 shows the convergence of kNs (�; �) and k
N
v (�; �) to ks(�; �) and kv(�; �), respectively. Observe that the

convergence of kNs (�; �) is very rapid.

Although we presented theoretical results for the case of Kelvin-Voigt damping only, Figure 4.2 shows

that similar results hold for structural damping. In particular, an integral representation exists and the

�nite element approximations converge. It is important to note that the functional gain for strain, ks(�; �),

remains smooth and is the same as the gain obtained with Kelvin-Voigt damping. However, there is a

marked di�erence in the smoothness of kv(�; �). This functional gain has a sharper \peak" at � = z than

the corresponding velocity gain for Kelvin-Voigt damping. Although we expect that for structural damping,

kv(�; �) belongs to H
1, we conjecture that t! kv(�; t) is not H

2.
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Finally, for viscous damping, the numerical results shown in Figure 4.3 show that again, kNs (�; �) is well

behaved and yet kNv (�; �) seems to be as singular measure concentrated at � = z. Thus, we conjecture that

the representation (3.35) does not hold for the wave equation with viscous damping for any L2 function

kv(�; �). Similar results were noted in [8] for undamped beam equations and in [7] for parabolic equations

with highly unbounded input operators.

The numerical results also indicate that the strain functional gains are independent of the dampingmodel.

As shown in Figure 4.4, kNs (�; �) does not change as the damping model changes. Thus, it seems from the

numerical experiments that damping has the most impact on the existence and smoothness of kv(�; �).

5 Conclusions

In this paper we have provided an integral representation theorem for the LQR feedback operator for the 1D

wave equation with Kelvin-Voigt damping and fully distributed control. The motivation for this e�ort comes

from the problem of designing suboptimal low order dynamic compensators and for optimal sensor location.

Although the theoretical results presented here are restricted to problems with Kelvin-Voigt damping, the

numerical results suggest that more general results are available. Also, these same numerical results indicate

that once the damping is insu�cient to ensure the analyticity of the control system, the existence of L2

functional gains is in doubt. In particular, the solution of the Riccati equation may not be Hilbert-Schmidt.

The LQR problem for distributed parameter systems has received considerable attention during the past

ten years. However, problems in which B;Q and R are all non-compact have not been fully explored. Temam

[12] considers the di�erential Riccati equation with B = R = I, but assumes that Q is Hilbert-Schmidt.

Similar results are found in [4, 6]. Finally, as the numerical evidence suggests, many theoretical issues are

not yet settled.
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Figure 5.1: Convergence of the Functional Gains, Kelvin-Voigt Damping.
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Figure 5.2: Convergence of the Functional Gains, Structural Damping.

0
0.5

1
0

0.5
1
0

0.1

0.2

k_s(.,.), N = 8

0
0.5

1
0

0.5
1

−20

0

20

k_v(.,.), N = 8

0
0.5

1
0

0.5
1
0

0.1

0.2

k_s(.,.), N = 16

0
0.5

1
0

0.5
1

−50

0

50

k_v(.,.), N = 16

0
0.5

1
0

0.5
1
0

0.1

0.2

k_s(.,.), N = 32

0
0.5

1
0

0.5
1

−50

0

50

k_v(.,.), N = 32

Figure 5.3: Convergence of the Functional Gains, Viscous Damping.

10



0
0.5

1
0

0.5
1
0

0.1

0.2

k_s(.,.), N=8, Kelvin−Voigt

0
0.5

1
0

0.5
1
0

0.1

0.2

k_s(.,.), N=8, Structural

0
0.5

1
0

0.5
1
0

0.1

0.2

k_s(.,.), N=8, Viscous

0
0.5

1
0

0.5
1
0

0.1

0.2

k_s(.,.), N=16, Kelvin−Voigt

0
0.5

1
0

0.5
1
0

0.1

0.2

k_s(.,.), N=16, Structural

0
0.5

1
0

0.5
1
0

0.1

0.2

k_s(.,.), N=16, Viscous

Figure 5.4: Structural Gains for Various Damping Types, N = 8,16.
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